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Abstract

) This document describes an algorithm for incremental parsing of expressions in the context of
syntax-directed editors for programming languages. Since a syntax-directed editor represents
programs as trees and statements and expressions as nodes in trees, making minor modifications in
an expression can be difficult. Consider, for example, changing a * + * operator to-a " ** gperator- oré——
adding-a Short subexpression ata syntactically but-net-structurally-correct-pesitiory, Sucivas insering._
") * (d" atthe # mark in"(a + b- # + ¢}Z_To make these changes in a typical syntax-directed
editor, the user must understand the tree structure and type a number of tree-oriented construction
and manipulation commands. This document describes an algorithm that allows the usar to think in
terms of the syntax of the expression asitis displayed on the screen (in infix notation) rather than in
terms of its internal representation (which is effectively prefix), while maintaining the benefits of
syntax-directed editing. The time and space complexities of the modifications for each new token are
linear in the depth of the syntax tree. 6————
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o 1. Introduction

8 | |

m This paper describes an algorithm for incremental parsing of expressions in the context of syntax-

- directed editors for programming languages. The algorithm currently handles expressions involving

»-“ZZE} only binary infix operators, but could be extended to n-ary operators and function calls and to
i statements for languages that can be handled by a precedence parser. Qur algorithm differs from
other incremental parsing algorithms in that it does not require the overhead of modifying a standard
parser or maintaining a parser stack or any data- structure other than the syntax treé. Instead, the
algorithm applies tree transformations to maintain a correct syntax tree. The algorithm is table-driven -
and language-independent. Based on the user's command (to insert or delete an operator, for
example) and the current state of the internal syntax, the relevant members of a small set of tree
transformations are selected. Thus, after a token is inserted or deleted, transformations are
automatically applied to restore the syntax tree to a correct state in terms of its precedence
relationships and parentheses balancing.

Chapter 2 of this paper describes syntax-directed editing and provides motivation for our work.
Chapter 3 describes how the user interacts with the editing environment. Chapter 4 describes the
algonthm and gives several examples of its operation. Chapter 5 describes in more detail the
transformations performed by the algorithm. The final chapter describes possible extensions to
non-binary operators and statements and discusses our implementation of the algorithm. The
appendix includes a summary of the pfecedence relations and the text of the full algorithm, minus
those transiormations best depicted by illustrations in Chapter 5. ‘
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2. Syntax-Directed Editing

A syntax-directed editor is a language-oriented editor in which programs are constructed and
modified according to the syntactic constructs of the language rather than by editing characters and
lines. A program is maintained intemaliy as a syntax tree rather than as text. The text displayed on
the screen is generated as needed by unparsing the internal representation.'

Besides the program editor, the same syntax tree may be used by other tools in a software
development environment, such as semantic analyzers, intermodule corisistency checkers, code
generators, source-level debuggers and program transformation tools. The syntax tree, perhaps
augmented with additional information, provides a uniform internal representation for these tools. In
the case of the Gandalf environment [4] and ISDS [1], the syntax-directed editor also provides a
uniform user interface for the integrated environment. The syntax-directed editor replaces both the
text editor and parser components of the standard programming cycle. -

In the external téxtual representation diéplayed on the screen of a typical syntax-directed editor, a
cursor marks the node that will be the target of the next éditing operation; the cursor is often
displayed by highlighting the entire subtree rcoted at the current node. The user enters a program by
repeatedly selecting the template for the desired statement from the menu of tempiates legal at the

current cursor position. The editor constructs a node for the selected statement, inserts it in the

program syntax tree at the cursor position and displays the template on the terminal screen.

A template includes the concrete syntax, or “syntactic sugar”, of the se!eémd statement and leaves
place holders (meta nodes) for the components specified by its abstract syntax. For example, the
user might select the while statement by typing "w" and the editor would respond by displaying the
while statement on the screen and positioning the cursor (denoted in this paper by underlining) at the
first component. A meta node, which ls a component of a template that has ;\ot yet been filled in, is
displayed as $type, where type is the class of ncdes that can legally be inserted at that component.

while $expression )

do Sstat_ement;

Expressions, as well as statements, may be entered by selecting templates. This method of
expression entry is used in the ALOE system [6, 7]. For example, the user might select the less-than
expression by typing "<." ’

Somaymu-dimcu editors maintain a text buffer, with nmmu\otoxtmdtInoonupoMInonodamnnmm
m.mmmmm.muunummmm
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while gexpression < $expression
do $statément;

Variables and literals are entered by selécting the appropriate special template and then typing the
variable name or literal value, respectively.

Syntax-directed editing applied to ex.pressions is not without problems. First, expressions must be
entered in (approximately) prefix notation rather than infix form .even though the expression is
displayed in infix form. This representation seems unnatural to many users. Another problem is that it
is awkward to modify expressions. For e-xarhple, tochange "a + b * ¢" inio "(a + b) * ¢", the user
must either delete the original Subtree and enter the desired subtree from scratch or perform a
tedious series of clip, delete, and insert operations that require the user to understand the internal
structure of the syntax tree.

One alternative exemplified by the Cornell Program Synthesizer [10] is to enter expressions as
strings. When the user signals that an expression is complete, it is parsed and the resulting parse
structure is inserted into the syntax tree. This allows the user {0 enter the expression in a natural way
while maintaining most of the advantages of syntax-directed editing. This approach requires a
complete reparsing of expressions that are modified in any way, which is relatively slow for large
expressions. ' .

A third alternative is to enter expressions (or statements) as strings that are incrementally parsed
on eﬁtry. As the user enters the expression, the available input is parsed and each node is
constructed as soon as possible. In Wegman's algorithm for the IBM PDE1L system [8, 11, 13] and
Ghezzi and Mandrioli's algorithm [2, 3], the parser state is saved for each node in the syntax tree.
Modifications are performed by entering the new string representation of the desired subexpression,
restarting the parse before the first new token and continuing the parse to the end of the new
subexpression. The user does not have to re-enter entire expressions or perform unnecessary
modifications to the syntax tree.

Morris and Schwartz [9] have taken a slightly different approach to incremental parsing. Their
algorithm maintains a series of parse trees for each expression, where a parse tree is split whenever a
modification occurs in the text it covers. The trees are patched back together using an extension of
traditional LL(1) parsing. :

We have also taken an incremental approach. The differences between our approach and these
standard incremental parsing approaches are:
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1. We do not require the overhead of permanently maintaining a parser stack in addition to
the syntax tree. Our algorithm does not require any data structures other than the syntax
tree and its symbol table, boih of which are already provided by the syntax-directed

’ | editor.2

X 2. We do not modity or extend a traditional shift-reduce or other type of parser that involves
i matching productions. Instead, we use a small set of tree transformations that are
applied automatically as an expression is created and madified to keep the associated
syntax tree in correct form with respect to precedence relationships and parentheses
balancing.

3. Changes are reflected in the syntax tree immediately as they are typed in and converted
to tokens by a lexical analyzer. (The modified expression is displayed on the next screen
refresh.) Our algorithm does not produce a text representation of the program to be
modified, perhaps in several places, and then partially reparsed so the tree can be
updated; the text appears only on the display and is not stored (except on special
command for such purposes as producing hardcopy).

4. Our algorithm does not necessarily fail on syntactically incorrect input. In some cases,
new meta nodes or empty operators are inserted automatically to ensure the structural
integrity of the syntax tree. The user can fill in the missing subexpressions later.

M.amdeMumuMmmmuwmwmm
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3. The User \Ii:ew oi the Ed'i'ting Environment

In this chapter we describe the aspects of the user interface (of a hypothetical syntax-directed
editor) that are relevant to our algorithm, including the cursor and the primitive operations provided.

The user sees the infix form of an expression displayed on the screen with a cursor highlighting the
current editing position (which corresponds to some node in the syntax tree). The editing operations
available to the user are:

e construct -- construct part of syntax tree;

o delete -- delete part of syntax tree;

o clip -- copy part of syntax tree to a buffer;

° inse.rt -- insert contents of buffer into syntax tree;
e replace -- replace part of tree;

Other desirable editing operations that are not discussed in this document include swap,
undelete, mark and move. The cursor movement commands are:

e in (or down);

e out (or uﬁ);

e next (or right);

e previous (or left);
o root (or top).

How these operations actually modify the syntax tree ana the cursor depends on the current editing
mode. Some of these commands are available only in some of the editing modes. There are three ,
editing modes: node, token and character. The mode command is provided to switch modes. Node
mode is the standard (and sometimes only) editing mode of most syntax-directed editors and
character mode is related to the standard editing mode of most text editors. In the algorithm
presented here, we are primarily interested in token mode.

IR, I I I T S} | P PP P ©n - . - .
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3.1 Node Mode -

Node mode is the normal editing modé of a syntax-directed editor. The user constructs a syntax
tree by repeatedly selecting a template to be inserted at the current cursor position. The editor
checks the legality of the selected template at the current position, constructs the node
corresponding to the template, moves.the cursor to the first empty component (meta node) of the
template and displays the part of the syntax tree surrounding the new template on the screen. The
cursor highlights the entire subtree rooted at the current node.

In this mode, in moves the cursor to the first child of the current node, out moves to the parent,
next moves to the next sibling and previous moves to the previous sibling. The root command
moves the cursor to the root node of the syntax tree. The delete command deletes the entire subtree
rooted at the current node (the current cursor position). Similarly, clip copies a subtree to a buffer
and insert replaces a meta node with the root of the subtree from a buffer. Replace replaces the
selected subtree with the subtree from a buffer; it corresponds in node mode to a sequence of more
primitive commands. In contrast to standard syntax trees, our algcrithm requires the explicit
presence of these parentheses in case the user later edits the expression in token mode, as explained
below.

Although node mode is the most common editing mode in syntax-directed editors, it is only
peripherally related to the algorithm described in this paper. We present it as a contrast to token
mode, the primary editing mode relevant to this paper, and because tree modifications performed in
token mode must be compatible with prior and later modifications made in node mode. Each of the
different modes supports a slightly different type of modification of the syntax tree and is more
convenient than the others in certain situations.

3.2 Token Mode

In token mode, each operator, terminal, open parenthesis or close parenthesis is considered to be
a token. We assume that the tokens themselvés are recognized by a table-driven lexical analyzer
provided by the syntax-directed editor. The portion of a syntax tree representing an expression is
normally constructed by repeatedly adding operator, terminal and parenthesis tokens to the right of
the current cursor position, which is some 'token in the expression (this mechanism is called the
construct after command, although typically the user types only the new token without giving any
- explicit command). However, other edifing operations allow the user great flexibility in modifying the
expressions (or partial expressions) that have been entered. We use a slightly non-standard

ot a e Dt amm At m e lial A e e S faltmi fal fa a s ke m ed B bbb Bn Hmnd oK kot
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L ‘_'.‘ . terminology in this paper since we assume a syniax tree rather than a parse tree: a terminal is some
o terminal element of the programming language that can occur as a leaf in a syntax tree, such as a
literal or identifier. Operators and parentheses are not considered terminals because these occur
only as the types of nodes, not as leaves, in a syntax trew.

The cursor motion commands available in token mode are root, right and left. The root

command moves the cu}sor to the root of the current expression; it does not move outside the
expression to the statement and procedure level. The user can switch to node mode for movement
outside: the current expression. Right moves the cursor 1o the token immediately to the right in the
left-to-right display of the expression; left r_ndves the cursor to the token immediately to the ieft. The
cursor highlights only the current token.

The editing operations provided in tpken mode are given below.

e construct after: Operator, terminal and parenthesis tokens are repeatedly added to the
richt of the current cursor position in the screen display. The user does not actually type
the construct atter command; instead, she simply types the new token when the cursor
is at the desired position. Internally, the algorithm creates a new node, adds it to the
syntax tree and restructures the tree to preserve precedence relationships and
parentheses balancing. After the trée transformation is complete, the screen is updated
with the cursor at the new token.

e construct hefore: A token is added to the left of the current cursor position. The user
must give the construct before command explicitly and only one token may be added
for each command invocation. This command is necessary for adding tokens to the
beginning of an expression. '

» construct at: The cursor must be at a meta node or an empty operator. The given
token, if it is of the correct type, replaces the place hoilder and the expression tree is
restructurgd as necessary.

L PRGN .

o delete: Typing the delete command removes the current token and restructurés the
syntax tree as necessary. The cursor is moved to the token to the left of the deleted
token, or to the right if there is no token to the left. ' .

e

e replace: The current token is replaced with the given token, which must be of the same
type (operator or terminal), and the tree is restructured. The cursor is displayed at the
new token. ' '

@« .

The clip and insert commands are not provided in token mode because the effects can be easily -
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provided by node mode cbmmands. In addition, 'node mode should be used for moving entire.
subtrees.

3.3 Character Mode

Character mode is for editing the text of terminals and operators; both cursor movement and
editing commands are character-oriented. Character mode commands usually result in changes to
tokens that are then transiated into token mede commands. Switching into and out of character
mode can be handled automatically. Character mode is not discussed further in this paper.
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4. The Algorithm

4.1 Overview

When editing expressions in token mode, the user normally adds characters at the end of the
expression and occasionally makes corrections by deleting and inserting tokens or sequences of

- tokens in the middle of the expression. I'-'irst we will look at a few examples of how the algorithm adds

tokens to the end of an expression, then we will see how tokens are inserted and removed from
arbitrary locations within an expression. Throughout this chapter, we use the term “insert”
interchangeably with "'construct." Here, both terms refer to the construct user command described
in Chapter 3 rather than to the insert user command that ihserts the root node of a buffer into a
position in a program tree.

It is assumed that all operators are binary infix operators. Each type of operator has a right-
precedence and a left-precedence. A higher precedence means that the operator binds more tightly
than an operator with lower precedence. For example, "a + b * ¢" means "a + (b * ¢)" rather
than "(a + b) * c" because "*" has higher precedence than " +." Left and right associativity is
subsumed by left and right precedence ;'elationships; for example, the right precedence of a left
associative operator is greater than its left precedence. A table of the operator precedences used in
the examples presented in this paper is given in the appendix. Possible extensions to the algorithm
for non-binary operators, for function calls and for statements are discussed briefly in Chapter 6.

The user’s editing commands are réduoed to a small set of basic tree-manipulating procedures,
including structural transformations and cursor location changes. However, the user applies the
commands to the text display and need not be aware of the underlying syntax tree. Most of the
transformations are introduced by example here first, then described more generally in Chapter 5.
The rest of the full algorithm is givgn in pseudo-code in the appsndix.

4.2 The Syntax Tree Representation

The syntax tree is represented in a straightforward tree data structure. The leaf nodes are either
terminals typed in by the user or meta nodes, indicating that a terminal or subexpression is expected
but has not yet been specified. Intermediate nodes represent subexpressions consisting of an
operator or parenthesis (the exact type is stored at the node) and two operands. The operands are
stored as the left child and the right child of the node (there is only a single child for parenthesis
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nodes). In addition, each node contains a back pointer to its parent node. The internal
representation also includes a cursor variable which points to the node representing the token
highlighted on the user’s screen. It appears to the user that the cursor points to a particular token,
rather than the entire subtree rooted at the node representing that token as in node mode.?

To achieve syntactic correctness, meta nodes and empty operator nodes are inserted and deleted
as needed. An empty operator is a place holder operator node that has at least one child thatisnota
meta node. The operator may not have been filled in yetor it may have been deleted. Meta nodes are
displayed to the user as "SMETA" and empty operator nodes as "$OP.” In addition, open
parenthesis, close parenthesis, and matched pair parentheses nodes are represented separately.

For example, if the user types "a + ( * b,” which is syntactically incdrrect, it is stored internaily
and displayed as "a + ( SMETA * b,” which is correct but incomplete. [f the user had made a
mistake in typing and wanted to correct it by deleting the " + " or " *" operator, the "$SMETA " node
would be deleted as well. The expression "a + ( $SMETA * b" with the "b" token highlighted is
stored internzlly as illustrated below. The cursor is a pointer to the "b" node. (In this paper, the
cursor positien is indicated by underlining.)

.1\
a (.

|

®

/ \
SMETA [}

Figure 4-1: Syntax tree for "a + ($META * b."

4.3 Syntactic Correctness

A structurally correct expression tree is always maintained internally. In such a tree, all binary
operators have exactly two chiidren, all parenthesis nodes have exactly one child and terminals and
meta nodes have no children. As described above, meta nodes and empty operators may be needed
to maintain correctness. Tokens to the right (left) of a token in the display correspond to nodes that

are right (left) ancestors of the token's node or descendants of these right (left) ancestors or right '

(left) descendants of the node itself.

3mmum.unmunwmmmuummmd. for example, by a surrounding rectangle in reverse video.
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To determine the left and 'right anceétors ofa nodé. perform the following: Start at the node. Ifitis.
the left child of its parent, then the parent is one of its right ancestors; if it is a right child, then the
parent is a left ancestor. This is repeated, comparing the grandparent and parent of the start node
similarly. Right and left ancestors are those ancestor nodes to the right or left, respectively, of the
current node. For example, see Figure 4-2. ’

oPo

Figure 4-2: The right ancestors of "b" are OP1, OP2 and OP3. OPOisa
left ancestor.

A correct tree also saiisﬂes the constraints that the right-precedence of every operator node is less
than the left-precedence of its right child and that the left-precedence of every node is less than the
right-precedence of its left lcl\ild. The preceding constraint only applies when the children are
operators; meta nodes, terminals and pa;enlhesis nodes are also correct as children of any operator
node.

Parenthesis balancing is an additionai constraint. in a properly balanced tree, all tokens to the
right of an open parenthesis (but befcre any matching close parenthesis) in the display should be
descendants of the open parenthesis node (or the matched parenthesis node). Similarly, all tokens to
the left of a close parenthesis (and after any matching open parenthesis) should be descendants of
the close (or matched) parenthesis node. All nodes that are descendants of a matched parenthesis
node should of course lie between the matching parentheses in the display. A properly balanced tree
need not be complete: thus, some parenthesis nodes may be unmatched.

Consider for example, the correct syntax tree for "a + (b + ¢ *d *e) *ft gt h" shownin
Figure 4-3. Note that all the nodes that correspond to tokens appearing after the "d" in the display
are right ancestors or their descendants and all those that correspond to tokens appearing before are
left ancestors or their descendants (open parentheses are considered left ancestors and close

parentheses are right ancestors).

............
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Figure 4-3: Correctsyntaxtreefor"a + (b+c*d*e)*frgth"

The tokens between the parentheses in the display of Figure 4-3 all lie below the matched pair node
and, within that subtree, the first " * " node lies below and to the left of the " + " node because it has
greater precedence and appears after it. Thesecond " *" node within the parentheses lies below and
to the left of the first because the right precedence of " *" is greater than its left precedence. On the
other hand, the first "t node lies above and to the left of the second one because the right
precedence of "t" is less than its left precedence. The precedence values of all operators used in the
examples in this paper are given in a table in the appendix. '

Suppose the close parenthesis were after the "f" rather than after the "6," giving
"a+(b+c®d*e*t)tgth.”inthis case, the trée would not be correctly balanced because the
"** and the "f" that would appear between the parentheses are not below the parenthes:s node. The
correct syntax tree is given in Figure 4-4. '

Figure 4-4: Correctsyntaxtreefor"a + (b+c*d*e*f)tgth" |

4.4 Construct at End of Expression

In the typical case of adding tokens to the end of an expression (the construct after command), '
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the algorithm updates the syntax tree by inserting the new token at the cursor location,* then
comparing the new token and its parent to make sure that precedence relations are satisfied and
restructuring the tree if they are not. When adding an opérator to the tree, a meta node representing
the second operand is always added (the first operand is the node previously pointed to by the
cursor). When a terminal is added to the end of an expression, the cursor must be pointing to a meta
node, an operator node whose right child is a meta node that the terminal replaces or an open
parenthesis node whose child is a meta node. In each case, the cursor is reset to highlight the new
token.

For 2xample, consider what happens when the user types in the expression "a + b * ¢.”

1. The syntax tree is initialized to a single meta node with the cursor pointing to that node.
(This meta node is actually a child of some statement in the program being constructed,
but we will describe the algorithm as if the expression were itself the root node of the
tree.)

SMETA
Figure 4-5: Root meta node.
2. When the "a" is encountered, the algorithm replaces the meta node with the identifier
“a" and the cursor stays pointing at that node.
¥
Figure 4-8: Meta node replaced by identifier "a" node.
3. After the " + " is typed, a new node is created. The new node is a " +" node whose left
child is the "a" node and whose right child is a meta node. The cursor location is the
“ + " node. Since this node has no parent (in the expression), no further restructuring is
considered.
:

/ N
a SMETA

Figure 4-7: Addition of operator node.

4. When the "b" is typed, it fills the meta node that is the right child of the current cursor
location (the " + " node) and the cursor is moved to the "b" node.

“The new token is always added at the bottom of the tree, and then migrated upwards 1o its correct position. i the token is &
terminal it is added as a leaf node, otherwise it is added as the parent of an existing leat node or a new meta node. ¥ tokens
were not added at the bottom of the tree, our algorithm wouild have to be more complicated to consider the possibility of .
migrating the new node downwards as well.
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Figure 4-8: Chiid meta node replaced with identifier "b" node.

5. When the "*" is encountered, the same process happens as for the " +." A new node is
created to replace the "b" node and becomes the right child of "b"'s parent. The new
"*" node has the "b" naode as a left child and a meta node as the right child. Since we
now have an operator node with a parent, we must consider restructuring. However, in

. this case the left-precedence of the " *" operator is greater than the rightiprecedence of

the " + " operator, that is, " * " binds more tightly than * +," s0 no changes are needed.

+

m /A
: 2
) / \

b SMETA

L‘ Figure 4-9: Addition of child operator node.

6. Finally, when the "¢" is typed, it fills he meta node that is the right child of the " *" node
(the current cursor location) and the cursor is movead to the “¢" node.

Figure 4-10: Child meta node replaced with identifier "c" node.

This example illustrates two very simple transformations, fill and nestieft. Fill simply replaces a
meta node by another node such as a terminal. This occurs in steps 2, 4 and 6. The nestieft
i transformation, which occurs in steps 3 and 5, replaces a given node by an operator node and the
g node becomes the left child of that operator. In any transformation, when a node "A" with parent
r "P" is replaced by a node "B," the parent and child links are updated so that "P" becomes the
- parent of "B" and so that “B" becomes the right (or left) child of the parent, just as "A" was. These
transformations are illustrated in more detail in Sections 5.1 and 5.2,

er v MR TRONLAL Lt B et A R

Suppose instead the user types "a * b + c.” The first four steps are analogous to those for the
previous example. However, in the fifth step a reorganization of the tree is needed since the left-
precedence of the new " + " node is less than the right-precedence of the parent " *" node. After the
user types the " +," the new operator node is added as usual.
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7 N
b  SMETA

Figure 4-11: Addition qf child operator node.

However, since the precedence conatraints are not met, restructuring is needed. What happens is
that the tree is transformed so that the new, lower precedence node (" + ") replaces the the higher
precedence node (" *"), and the higher precedence node becomes the Ieft child of the new operator.
The left child of the new operator becomes the new right child of the higher precedence node. The
cursor stays at the most recently added node, " +." The result is:

s
/7 N\
*  SMETA

F A
a ]

Figure 4-12: After restructuring.

The last step is inat the ".c" fills the meta node as before. (The actual construct after algorithm is
given in pseudo-code in the appendix.) ‘

The restructuring just described is a very basic transformation called the (twiddleright
transformation. There is also a twiddle/eft transformation that is similar, but swaps the left child and
its parent operator rather than the right child and its parent. These transformations are illustrated in
Section 5.4. There are many transformations given in this paper that have both xxxleft and xxxright
forms. In general, the former involves the left child of an operator and the latter invoives the right
child. The two transformations are mirror-images of each other.

If the higher precedence node had a parent, it would be compared with the new ncde, now its child,
in the same fashion. For example, suppose the user types "a - b t ¢ - d.”" The first six steps are
analogous to those in the first example, since the left-precedence of the "t" operator is greater than
the right-precedence of the "-" operator. When the second "-* token is typed, the new operator
node is created and a nestieft performed.

[
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Figure 4-13: After nestleft.

Then the new operator node is compared to its parent. Since the right-precedence of “t" is greater
than the left-precedence of "-," a twiddleright is performed.

Figure 4-14: After first twiddleright.

The operator node is now compared to its new parent. Since the ljight-precedence of "-" ig greater
than its left-precedencae, that is, "-" is left-associative, another twiddleright is performed.

/7 N\
- SMETA
/7 N\ )
a *
- / N\
b ¢

Figure 4-15: After second twiddleright.

Since the new "-" node is now the root of the tree, the procedure haits. Finally, the "d" fills the
meta node.

Gy (e e

N PR D

This whole process of repeated comparisons and twiddles (and some 6ther transformations
described later) is called the rippleup procedure. Whenever this process begins, the entire tree with
the possible exception of the newly added operator satisfies the precedence constraints. The only
possibie violation the twiddle transformation creates (since it guarantees that the constraints between
the new operator and its original parent are now correct) is that the precedence relationship between
the new operator and its new parent may be incorrect. This is exactly what rippleup checks. The
rippleup process continues until all precedence relationships are correct. This process is described
in detail in Section 5; it is also given in pseudo-code in the appendix. |
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In the actual algorithm, an optimization is made td avoid daing the twiddle transformations one by .

one. Instead, the node at the bottom is checked in turn against a chain of operators all going in one
direction (all left or all right ancestors) and then inserted only when the proper location is found
according to the constraints or when the direction of a chain changes. This process is called the
macrotwiddie transformation. An example of this is given later in Section 4.5.

Parenthesis balancing is similar in some ways to correcting operator precedence relationships.
Inserting an open parenthesis at the end of an expression is quite simple. There are two cases: (1)
the open parenthesis follows an operator or another open parenthesis and (2) the open parenthesis
follows a terminal or a close parenthesis. "

In the first case, the open parenthesis is nested onto the token immediately to its right in the display
and this tokgn becomes.its child. The open parenthesis is then migrated up the express’on tree to its
correct position using the rippleup process: rippleup handles parentheses balancing as well as
precedence constraints. The second case syntactically incorrect and triggers an error message.
Syntax errors involving parentheses are not corrected because of the ambiguity with function calls
and array references. For examplie, the user probably intends an identifier followed immediately by an
open parenthesis to represent a function call rather than a binary expression with a missing operator.

Inserting a close parenthesis at the end of an expression is also simple and approximately
symmetric to the open parenthesis case. The two cases are: (1) the close parenthesis follows a
terminal or another close parenthesis and (2) the close parenthesis follows an operator or an open
parenthesis. For the syntactically correct first case, the close parenthesis is simply nested onto the
cursor (the terminal or close parenthesis), which becomes its child, and then rippled up the tree to its
correct position. The second case is not permitted.

Suppose the user typesin "a * (b + ¢ * d )." The steps are as follows.

1. After "a *" has been typed, the syntax tree is:

Figure 4-18: Syntax tree after "a *" is typed.

2. When the "(" is typed, it nests onto the meta node, which is the token immediately to the
right of the current cursor location (the "*" node). The cursor is moved to the new "("
node. '

. - N
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SMETA

Figure 4-17: Nest the child meta node in an open parenthesis node.

3. When the "b" is encountered, it fills the meta node child of the open parenthesis and the
cursor moves ta the "b" node.

Figure 4-18: Meta node replaced by identifier "b" node.

4. Then "+ ¢ * d" is typed and the algorithm continues as previously. The cursor is
placed at the "d", the last token typed.

L ]
/7 N\
a
| 4
o*’
VAN
b L
/7 N\
c d

Figure 4-19: After "a* (b + ¢ * d" is typed.
§. Finally, when the ")" is added, first a nestieft and then a rippleup is performed.

a. First the parenthesis is nested onto the node indicated by the current cursor

position.
]
7\
LI
|
+
/7 N\
b e
/ N
c 1
|
d

Figure 4-20: After nestieft.

b. The rippleup process now compares the ")" parenthesis with its parent. Since the
parent is an operator, a twiddleright is performed. Actually, the twiddle
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19

s, 885 R Aaled

Lik. foed

Kok dl Bk

Cnlats

R LN S WAL




27 October 1982 _ 20

transformations are not defined for parenthesis nodes. Instead, the
macrotwiddleclose .transformation is used for both this and the following step, to
perform the equivalent of a series of twiddles.

Figure 4-21: After first twiddleright.

c. Itthen compares the ")" parenthesis with its new parent. Since the parent (" + ")
is again an operator, another twiddleright is performed (conceptually).

Figure 4-22: After second twiddleright.

d. Now the parentheses must be matched, using the matchparens tran‘sformation.
This transformation folds the two parenthesi$' nodes into a single matching
parentheses node. The cursor is moved to the new combined node with an internal
notation that it is at the close parenthesis side. The rippleup is now complete. If
the matching open parenthesis had instead been part of a matched parenthesis
node, then rippleup would have been applied recursively to the newly unmatched
close parenthesis node from which the open parenthesis was "stolen” and to the
original child of the newly unmatched parenthesis node, since its migration up was
previously halted by the matching parenthesis.
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Figure 4-23: After matchparens.

The macrotwiddle family of transiornations is described in detail in Section 5.6.
Matchparens is described in Section 5.8.

Constructing at the end of an expression is really just a special case of constructing in the middle-

or at the beginning of an expression. It was described first so that the transformatidns would be

- easier to understand. In the next section we give some examples cf inserting new tokens into the

middle of an expression, then in the next chapter we discuss how the transformations are
generalized.

4.5 Construct Within an Expression

Inserting tokens in the middle of an expression is more difficult than adding them at the end
because all the tokens that occur after the inserted expression may change their position in the
syntax tree. To avoid reparsing the entire remaining input, the new token is added at the bottom of
the tree and the effect is migrated up using the rippleup process. The token is added at the bottom by
finding the leaf node whose token immediately follows the current cursor location.

For example, t3 add a specified operator after a terminal (or close parenthesis), do a nestleft of the
terminal (close parenthesis), then rippleun. Suppose the current expressionis "atb *c*d + o,"
and suppose the user wants to insert " + g" after the "b.” Then the user moves the cursor to the "b"

and types " +." Before the construct after, the syntax tree is as follows.
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After nesting the new " + " operator, the tree is:

b SMETA
Figure 4-25: After a nestleft of the "b" into the operater " +."

Next, the macrotwﬁdleright transformation is applied. This transformation locks at nodes that
correspond to operators that appear to the left of the new operator in the display and restructures the
tree if necessary. In the syntax tree, the operators to the left are found in the chain going upward
from the parent of the new operator (ih this case, only the single node "t"). The search stops when a
node is found whose left precedence is less than the right precedence of the new operator (or it stops
at the root or when the chain stops going up to the left). The new node belongs below the stopping
point. In this case, the node found is the grandparent node "*."

.

As shown in Figure 4-25, the new opefatou' node is then brought up to be the right child of this
stopping node. Its old parent (the "t" node) becomes the new node’s left child, and the old left chiid
becomes the right child of the old parent.

Figure 4-26: After macrotwiddieright.

Since the chain of ancestors is now to the right, the macrotwiddleleft transformation is applied. In
this case, the stopping node is the root node " +.” The new operator node is thén brought up to be
the left child of this stopping node. All the nodes between the stopping node and the old parent are
brought down to be the right children of the new operator, and the leftmost grandchild is set to be the
meta node that was previously the right child of the new operator. The result is illustrated in Figure
4-26.

:
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SMETA ¢
Figure 4-27: After macrotwiddleleft on the new " + " node.

To add a terminal after an operator ior open parenthesis), first find the right adjacent terminal. If it
is a meta node, fill it with the terminal, otherwise do a nestleft of it into an empty operator. '

Insenting parentheses in the middle of an expression is a bit more difficuit since we need to find
matching parentheses and bring them adjacent, which may change the pairing of other parentheses.
if an open (close) parenthesis is added to the middie of an expression, it is nested above the following
(preceding) tarminal, then the ripplebp process is applied until another parenthesis-type node is
found. The special parenthesis transformations -- macrotwiddleopen/close and matchparens -- are
used in the rippleup process. '

Congider inserting an open parenthesis after the cursorin "(a* b + ¢}t d.”

1. First the open parenthesis is nested onto the "h" terminal node at the bottom of the tree.

Figure 4-28: After nest of "(."

2. Now the macrotwiddleopeﬁ transformation is applied to migrate the new open
parenthesis up to its correct position and change the relative positions of the "*" and
" + " operators. '
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Figure 4-29: After macrotwiddleopen.

3. Now matchparens is applied to find the ciose parenthesis matching the new open

parenthesis. This parenthesis is "stolen” from the matched parenthesis node higher in
the tree. '

Figure 4-30: After parentheses are matched.

4, Since the close bare’nthesis was "stolen”, the matchparens transformation now invokes

the rippleup process twice, first on the newly unmatched parenthesis node and then on
its original child (its child before the first rippleup was invoked). The first invocation
migrates the open parenthesis to the root of the expression. The second rippleup
twiddles the "*" and "t" operators into their correct precedence: relationship. The
insertion of the new open parenthesis node is now complete.

Figure 4-31: After matchparens.
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4.6 Other Construct Commands

In addition to construct afler, the éonstruct before and construct at commands are also
provided. In general, construct before is symmetric with construct after, since the token is
inserted before the current cursor position rather than after it in the display. To perform a construct
at, the cursor must be at a meta node or an empty operator. Typically, the new token is nested onto
the meta nade and then rippled up the expression tree. Similarly, a new operator token may replace
an empty operator and be rippled up to its correct position. The aigorithms for these two commands
are given in the appendix. '

4.7 Delete

The delete command céuses the highlighted token to be deleted. It is not possible to delete a meta
node or empty operator node unless it is adjacent (in the display) to an empty operator or a meta,
respectively; otherwise, the expression would become syntactically incorrect. In addition, sometimes
these nodes are automatically removed from the tree 10 maintain the syntax structure when another
token is deleted. After the delete occurs, the tree is redisplayed with the cursor at the token to the left
of the deleted token, if there is one, and to the right otherwise. ’

In the case where the highlighted token is an operator, the algorithm checks whether there is an
adjacent meta node on either side of the operator. If so, it performs a collapseleft or collapseright
transformation to remove both the operator and the meta node. Otherwise, it replaces the operator
with an empty operator node. '

Consider the expression "a * $META + b" with the cursor at the " + " node.

i+

Figure 4-32: Syntax tree for "a * SMETA + b."

When the " +" token is deleted, both the "$META" and " +" nodes are removed using the
collapseright transformation. First, the " + " operator node is replaced with its left child, the "*." Its
right child is held aside.
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b b
/I N\
a  SNETA

Figure 4-33: Children of the deleted operator nods.

Then the meta node is replaced by the operator's right child. It the " + " operator node had a
parent, a rippleup would be performed.

.
/ N\
a b

Figura 4-34: After collapseright.

The algorithm is similar in the case of a terminal. If there is an adjacent empty operatof. both are
removed using a collapse transformation. Otherwise, the terminal is replaced with a meta node.

in the case of an open parenthesis, the parenthesis node is removed and the rippleup
transisrmation is performed on its child to correct precedence relationships. In the case of the open
half of matched parentheses, the same transformation is performed. In addition, the new close
parenthesis is migrafed up the tree using rippleup in order to balance parenthesis. If a matching
parenthesis is not found, the close parenthesis migrates to the highest legél position in the tree. The
delete of a close parenthesis or the ciose halif of matched parentheses is symmetric

The tull delete algorithm is given in pseudo-code in the appendix.

4.8 Replace

The other editing operation available in token mode is replace, which is defined only for an
cperator token. The operator node is replaced with the new operator, retaining the same children.
Then the rippleup transformation is applied to the operator node. If no cﬁanges are made, this
indicates that the portion of the tree above the node is congistent. it may be the case, however, that
the new operator has a higher precedence than one of its children, so the rippledown trdnsformaﬁon
is then applied to the operator node.

If the left child of the operator is itself an operator, the rippledown transformation compares the
left-precedence of the operator to the right-precedence of the left child. If greater than, it performs a
twiddleleft and continues the rippledown. The case for the right child is similar. A more detailed
description of rippledown is given in Section 5.10; rippledown is also given in pseudo-code in the .

appendix.




" LA A A S o T S D o e LT AR L |
BE g e ol o el Abde et~ et S Nl S A i R . e Pt IR ) - U . .. . - . . . R

27 October 1982 27

For example, consider thé expression"a* h + ¢ + d” with the cursor at the leftmost ” + " node.

Figure 4-35: Syntaxtreeof"a*b s ¢ + d.”

The user gives the replace command and types "t." Rippleup is applied first. The "t" operator 1
has a higher right-precedence than the left-precedence of " +,” so the rippleup fails. :
5 Then rippledown is applied. Since the "t" has a higher left-precedence than the right-precedence j
N of the "* " operator, the twiddleleft transformation is applied and the "t+" node becomes the child of 1
. the " *" node, which in turn becomes the child of the remaining " + " node. Since all children of "+" ]
5 are now identifiers, rippledown halits. ‘
§ ’ | » «

7\ 7\
: 2 d . d ]

/7 N\ /7 \
* ¢ a 2

/7 \ /7 \

[ ] ] ] c 2

Figure 4-38: Sefore and after rippledown.
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5. Summary of the Transformations

This chapter describes each of the transformations performed by the algorithm and some
constraints preserved by the transformations. First, we present the simple transformations: fill, nest,
unnest and twiddle. Then we give the more global transformations: collapse, macrotwiddle and
matchparens. Finally, the rippleup and rippledown processes are presented. The global
transformations and these two processes invoke each other recursively. The rest of the full algorithm,
(the part of the algorithm that selects among these transformations and applies them to the
expression tree) is given in the appendix.

5.1 Fill
The fill transformation simply replaces a meta node with a new node denoting a terminal,
parenthesis or operator.
<{parent) <parent>
| |
SMETA <new)>

Figure 5-1: Before and after filling SMETA with <new).

If the new node is a parenthesis or an operator, the parentheses in the expression may no longer be
balanced and the precedence relationships may no longer be consistent. Thare is a process called
rippleup, described in Section 5.9, that calls other transformations to re-establish these relationships.

5.2 Nest

There are two flavors of nest: nestleft and nestright. Both forms of nest take two arguments, a node
and a type. They create a new operator or parenthesis node of the given type and insert it between
the given node and its parent. Nestleft makes the given node the left child of the new node and
nestright makes it the right child of the new node. The other child is a meta node. i the new nodeisa
parenthesis node, nestleft and nestright are identical and make the argument node the child of the
new parenthesis node. In either type of nest, if the node was the left child of its parent, then the new
node becomes the left child of the parent, and similarly in the case of right child.
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<{parent> <parent>
[ ' |
<node> . <0P>
/ \
<node> SNETA

Figure §5-2: Before and after nestleft of <node> and <OP>,
<parent> <parent>
| |
<node> : <OP>
: /N
SMETA <node>

Figure 5-3: Betore and after nestright of <node> and <OP>.

Since nest creates a new operator or parenthesis node and inserts it into the tree between two
other nodes, the relationships between the node and its new child (and further descendants) and
between the node and its new parent (and further ancestors) may be incorrect. .

in all cases where the nest transformation is used by the token mode algorithm, the argument
<ncde> is a terminal; thus the relationship between it and the new <OP> node is correct and there are

- no further descendants. The rippleup process is used to correct the ancestor relationships of the new

node.

5.3 Unnest

Unnest is the inverse of nest. Unnestleft deletes the given node and replaces it with its left child.
Unnestright deletes the given node and replaces it with its right child. In both cases, the other child is
assumed to be a meta node or otherwisé undesired. These transformations are exactly the inverses
of those shown in Figure 5-2 and Figure 5-3.

After the unnest transformation has replaced a node with its child, the relaiionships between the
child and its ancestors may be incorrect and must be checked by the rippleup process. However, the
relationships within the subtree rooted at the child remain consistent. ‘

5.4 Twiddle

Now we come to the first interesting transformation. The twiddle transformation modifies the
structure of the tree by changing the relative positions of three nodes. it does not construct or delete
any nodes.
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Twiddleleft changes the relative positions of an opérator node and its left child, which must also be.
an operator. The third node involved is the right child of the left child. Let's call the operator node ‘
"OP1," its right child "N1,” and the pair and N1's descendants “subtree 1.” Call the left child "OP2,"
cail its left child "N2,” and call the pair and the descendants of N2 "subtree 2." The right child of OP2
is “N3,” which together with its descendants is "subtree 3. The parent of the operator nade is called
.p »

C

!

t

Lb- In the twiddleleft transformation, the root of subtree 2 replaces the root of subtree 1 as the child of
node P. The root of subtree 1 replaces the rcot of subtree 3 as the (right) child of subtree 2 (of OP?2).
The root of subtree 3 replaces the root of subiree 2 as the (left) child of subtree 1 (of OP1). In each

L case, the rest of the subtree is carried along with its root. Basically, the twiddleleft transformation

changes the left association of the relevant operators to right without changing the order of the

4 : P

2y

Figure 5-4: Before and after twiddleleft applied to OP1.
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Each of the three subtrees describer above is internally consistent at the time when the twiddleleft
is applied, although the relationship between OF1 and OP2 is incorrect. The internal consistency is
not changed by the transformation. However, after the twiddleleft is performed, OP2 may in turn be in
the incorrect position relative to the parent node P, so further transformations may be necessary until
: OP2 has migrated up to its correct position. !t is also possible that N3 and OP1 are not in the correct
ff.’:i relationship. When twiddleleft is applied by rippleup from the bottom up, N3 is always either a
. terminal or a node that was adjacent to OP1 before a previous twiddie, so the relationship is actually
correct. When twiddleleft is applied by rippladown, it is exacly the relationship between N3 and OP1

that is checked.
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The twiddle transformation of course maintains the correct right-left positions of all nodes. For
example, before the twiddleleft OP1 had right descendant N1, and left descendants N3, OP2 and N2.
After the twiddleleft, N1 is still a right descendant, N3 is now a direct left descendant, OP2 is a left
ancestor and N2 is a left descendant of a ’Ieft ancestor. Similarly, OP2 is transformed from having
right ancestor OP1 and right descendants N3 and N1 to having all three as right descendants and N2
remains a left ancestor. Note that the leaves are maintained in the original left-to-right order.

Y




v v v
" AR AR
- . .

27 October 1982 ' : 31

Twiddleright is the mirror image (and the inverse) of twiddleleft. It changes the relative positions of
an operator node and its right child, which must also be an operator. The third node involved is the
left child of the right chiid.

Figure 5-5: Before and after twiddleright applied to OP1.

5.5 Collapse

The two coliapse transformations ray be used when an operator or a terminal is deleted. If an
empty operator and a meta node are adjacent in the display, the transformations remove both of them
from the tree. Collapseright removes a meta node and its right adjacent empty operator while
colfapseleft handles a left adjacent empty operator.

Coliapseright replaces the operator with its left child (which may or may not be the meta node,
since the meta node may be a distant descendant) and then replaces the meta node with the
operator’s right child. [f the meta was in fact the operator's left child, this has the effect of an
unnestright transformation, the inverse of a nestright. Otherwise the effect is equivalent to performing
a rippledown on the empty operator (the empty operator has a higher precedence than any other
operator), which will make it the pafent of the meta node, and then performing an unnestright.
Finally, a rippleup must be performed on the former right child, which has replaced the operator, in

order to restore precedence constraints. :
{parent> {parent>
| |
<empty operator> NO
7\ : .
N0 <child> T0 .
.. ) N{
T0 . .o,
(T] T4 <chird>
T4 SMETA

Figure 5-8: Before and after collapseright of <empty operator> and SMETA.

The collapseleft transformation is the mirror-image of collapseright.
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<parent> <pareat>

| |

<empty operator> . NO

/ \ . ..
<child> NO . T0
. . Ni
. T0 . .
Ni <child> Ti
SMETA T4

Figure 5-7: Before and after collapseleft of Cempty operator> and SMETA.
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5.6 Macrotwiddie for Operators
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balancing by rippling unmatched parentheses through the tree.
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possible that OP1 is the same node as OP0. The parent of OP1 is called "P."

subtree 1 (OP0). In each case, the rest of the subtree is carried along with its root.

3

The macrotwiddle family of transformations is used by the rippleup transformation described in
Section 5.9. Macrotwiddleleft and macrotwiddleright are similar to the two twiddle transformations in
form, but may involve nodes that are not adjacent in the tree. They are equivalent to performing a
series of twiddle transformations. Macrotwiddleopen and macrotwiddleclose enable parentheses

Macrotwiddleleft, like twiddléleft, is a transformation on three subtrees to correct inconsistencies in
operator precedence relationships. Since macrotwiddleleft is called from within rippleup, the
operator node in focus is analogous to "OP2" of the twiddle transformation. As before, we will call its
left child "N2," and call the pair and the descendants of N2 "subtree 2." The right child of OP2 is
“N3,” which together with its descendants is "subtree 3." Call the parent of OP2 node "OP0.” Now
rather than simply comparing OP2 to its parent, we will look up tﬁe chain of operator ancestors until
z we find one whose left precedence is less than the right precedence of OP2, or until the chain
reaches the root or stops gbing up to the right. Let’s call the operator node at this stopping point
"OP1," its right child "N1," and the pair and N1's descendants down to OPO "subtree 1." it is

As in the twiddleleft transfonnation.‘the root of subtree 2 (OP2) replaces the root of subtree 1 (OP1)
as the child of node P. The root of subtree 1 (OP1) replaces the root of subtree 3 as the (right) child of
OP2. The root of subtree 3 replaces the root of subtree 2 as the (left) child of the leftmost operator in
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Figure 5-8: Before and after macrotwiddleleft of OP2.

Macrotwiddleright is the symmetrical transformation applied from rippleup when an operator is a
right child of its parent operator. '
P

Q)
- O
Q) ®

Figure 5-9: Before and after macroiwiddleright on OP2.

5.7 Macrotwiddle for Parentheses

Macrotwiddleopen and macrotwiddleclose' afe similar to the left and right macrotwiddle
transformations but are used to restructure the tree to migrate parentheses to the proper locations.
They too are called by the rippleup procedure {after matchparens has checked for any matches).
These macrotwiddles do not check precedences along the chains sincé they assume those are
already correct.

Macrotwiddleopen moves subtrees that are above an open parenthesis down below it. Like
macrotwiddleleRt, it is a transformatiofx on three subtrees. However, the second subtree is more
inclusive than the previous form, which included only operator OP2 and its left descendants. Here
again we call the operator that is the first right ancestor in the upward chain "OP0." Its left child,
which aiso is the leftmost ancestor of the open parenthesis, is called "OP2," and OP2's left child is
called N2. Together, OP2, N2, all N2's descendants, plus all of OP2's right descendants down to and
including the open parenthesis is called "subtree 2." The child of the open parenthesis is "N3,"
which together with its descendants is "subtree 3." Again, we look up th~ chain of ancestors of OPO
(but without checking precedences) until we find a parenthesis node, or until the chain reaches the
root or stops going up to the right. Let's call the operator node at this stopping point "OP1," its right
child "N1," and the pair and N1's descendants down to OPO "subtree 1." It is possible that OP1 is the
same node as OPO. The parent of OP1 is called "P." '
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The transformation is then to replace the root of subtree 1 (OP1) with the root of subtree 2 (OP2) as
the child of node P. The root of subtree 1 (OP1) replaces the root of subtree 3 as the child of the open
parenthesis. The root of subtree 3 replac: 3 the root of subtree 2 as the (left) child of OPO.

The rippleup process is then applied again to the open parenthesis in its new location.

opPo

® &
Figure 5-1 0.: Before and after macrotwiddleopen.

Macrotwiddleclose is symmetric to macrotwiddleopen.
]

()
& ®

Figure 5-11: Before and after macrotwiddleclose.

5.8 Matchparens

The matchparens transformation is called by the rippleup process whenever the argument to
rippleup is either an open or close parenthesis and there is a matching parenthesis close by. A newly
added parenthesis is' propagated through the tree by rippleup until it reaches either its correcf
position or the root of the expression. To check for a match of an open (close) parenthesis, trace up
the left (right) ancestor links until a parenthesis, the root or a right (left) ancestor is found. If there is
parenthesis that is a matched pair or a close (open) parenthesis, then a new match has been found.
There are two cases: .

1. The node is exactly the matching parenthesis. The two nodes are merged into one
matched parentheses node.

S
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{parent> {parent>
[ : |
( orPt,
\ .
oP1 .
. or2
0P2 (f
. |
) <childy
|
<childy

Figure 5-12: Before and after matchparens of ")" with "(."

After this transformation is performed, the rippleup process is applied to OP1 since the
precedence relation between OP1 and <{parent> may not be correct. Only parentheses
balancing and precedence relationships at the previous position of the moved
parenthesis may be made inconsistent by the matchparens transformation.

2. The parent is a matched parentheses. Then the node "steals” its matching parenthesis
from its parent and the parent is changed to the complementary type of unmatched

P rY Ty
]

parenthesis.
<parent> {parent)>
| |
() )
2 |
oP1 0Pt
0P2 oP2
) ()
| . |
{ehird> <chird> .

Figure '5- 13: Before and after matchparens of *)" with "()."

in this case, the upper parenthesis node is no longer balanced. Rippleup must be catled
to attempt to match it or migrate it to the correct location. Finally, rippleup must again be
applied to OP1, the child of the newly unmatched parenthesis.

5.9 Rippleup

The rippleup routine is not really a transformation, but a process consisting of a sequence of
transformations from the macrotwiddle family and matchparens {described in Sections 5.6, 5.7, and
5.8) that migrate an operator or a parenthesis up the tree. The process stops when the root of the
tree is reached or when no additional changes are required or possible.

P T R S N Y S S PP P b PR S P S S oy




BERET Y A K oo, T R R e - g

27 October 1982 35

Suppose the node being rippled up is an operaior. Conceptually, it is compared to its parent.
operator, and if the (right/left) precedence of the parent is greater than the (left/right)-precedence of
the node. then a twiddle(left/right) transformation is performed and the process is repeated with the
nade at the higher location. As described in the twiddle transformation, if the subtrees already have
the correct precedence relations, then only the newly connected nodes need be checked. Actually,
macrotwiddle transformations are used as shortcuts. When the root or a matched parenthesis node is

reached, rippleup stops.

If the node being rippled up is a parenthesis node, then the macrotwiddleopen and
macrotwiddleclose transformations are used until either the root is reached or another parenthesis
node is found. The matchparens transformation is used to balance parentheses and continue
rippleup if a matched pair or exactly matching parenthesis node is found: if a parenthesis. of the same

type is found, then rippleup stops.

The rippleup process is presented in pseudo-code in the appendix.

5.10 Rippledown

The rippledown routine is also not a new transformation but rather a sequence of twiddle
transformation applied repeatedly to a node until the node meets the precedence constraints
(parentheses balancing is not affected). Rippledown is applied at an operator node when it is
possible that the precedence relationships between the operator and its children may be incorrect.
This happens in the replace user command, where an operator is replaced by a selected operator.
The difference between rippleup and rippledown is that the former migra:es a node up the tree when
its relationships with its ancestors are incorrect; the latter migrates a node down the tree to correct its
relationships with its descendants.

Rippledown starts by comparing the operator of the argument node to its left child, and then to its
right child. If the left child is an operator node whose right-precedence is greater than the left-
precedence of the argument, apply twiddleleft and then rippleup to the left child. If the left child is not
migrated, then apply the symmetric process to the right child. If neither child moves, the new
operator is now in the correct place and the transformation halts. However, if either child is migrated,
then the process must be repeated recursively with the new children of the operator node. In the
case where the left child was twiddled, the original right child is still the right child of the operator and
is considered in the recursion.
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The rippledown process is presented in pseudo-code in the appendix.
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8. Conclusions

6.1 Related Work

As discussed in Chapter 2, our algorithm is similar in several respects to the incremental parsing
algorithms developed by Wegman [11, 13, 12], Ghezzi and Mandrioli [2, 3] and Morris and Schwartz
[9]. These algorithms involve modifications to traditional parsing algorithms.

The Morris and Schwartz method is to modify the LL(1) parse tables to treat entire subtrees as
terminals in some cases. Their algorithm maihtains a series of parse trees with links to the text buffer.
The text may be modified provided it ocbeys the "language constraint” -- the text up to the token
immediately preceding the cursor must be the legal beginning of a program. The text between two
such discontinuities is covered Dy a séparate parse tree. Whenever a command_ attempts to move the
cursor beyond a discontinuity, the parse trees are patched back together using an extension of
traditional Li.{1) parsing. However, full reparsing may be necessary in many cases.

The Ghezzi and Mandrioli method is to modity a shift-reduce LR parser (they discuss possible
extensions t0 LL parsers). The parser state is saved for each node in the entire syntax tree, with links
hetween each node and its corresponding production on the stack. Modifications are performed by
entering the new string representation of the desired subexpression and continuing the parse, using
an extension of a traditional LR parsing algorithm, from the indexed point in the parse stack to the
end of the new subexpression. The resulting incremental parser requires a'consiQuable amount of
storage to record the configurations entered by the parser gt each step of the analysis. it assumes
that the expression being parsed is syntactically correct, although it may be possible to remove this
restriction.

The Wegman method is an improvement over Ghezzi and Mandrioli. It also involves modifying a
shift-reduce LR(1) parser and permanent maintenance of the parser stack (which is stored in
spaghetti form for maximum sharing). The resulting parser makes no more than the minimal number
of changes required in the parse tree times a log factor of its height, whereas the earlier algorithm
may take time proportional to completely reparsing the progfam in the worst case. The algorithm
continues to operate in the face of syntactic errors in the modified portion of the program: it assumes
that the last token(s) entered is (are) the source of the error; the tree is not modified except to note
the position of these tokens in the display in relation to those represented in the legal syntax tree.

Our method is quite different in several respects. It does not involve the extension of standard '
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parsing techniques or the géneralion ofa Ianguage-épeciﬁc incremental parser from a grammar. The.

algorithm is language-independent and completely table-driven. The required tables include lexical
analysis information for recognizing tokens and the set of legal operators and their left and right
precedences.’

Our method does not involve additional data structures other than the syntax tree. In fact, we use
the standard syntax trees 'supported by most syntax-directed editors, which are generally more
compact than the parse trees generated by typical parsers [7]. We are considering, however, adding
two fields to each node in an expression tree to link the tokens in the left-to-right and right-to-left
order in which they appear in the display. The extra time required to create these links is negligible
since the left and right tokens are generally focund anyway as part of the algorithm, but once the links
are created, this searching time would be drastically decreased (to a constant). The primary costs
would be the ~xtra space for storing the links and the difficuities involved in reading and writing the
augmented syntax trees to a file.

Another advantage of our method is the ramoval of the necessity for maintaining a text buffer in
parallel with the parse tree. In the other algorithms, changes are first made in the text representation
and then the text buffer is partially reparsed to update the parse tree. Our algorithm supports the
direct modification aof the syntax tree without any intermediate changes in a text buffer. in fact, no
text buffer exists: the text on the display screen is generated dynamically by unparsing the syntax
tree; only the syntax tree is stored internally. Input is stored as a string only until it has been
converted to a token by the lexical analyzer. ’

Like the Wegman algorithm, our method handles syntactically incorrect input. In cases involving
only operators and terminals, our algorithm assumes the user intended to make these "mistakes” and
automatically inserts visible meta nodes and/or empty operators for the user to fill in later. In cases
involving parentheses, where there is an inherent ambiguity with function calls and array references,
the incorrect parenthesis triggers an ern;or message while the user is still in context.

The main disadvantage of our algorithm is that we have not yet worked out how to extend it to a
more general class of languages than those handled by a precedence parser.

mmmwMMmem\lmocmmmtohmdleanuoddmemnypesofbracmwnm
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6.2 Extensions -

The algorithm should be extendible to 6ther programming language constructs such as non-binary,
prefix and postfix operators, function calls, array references, and statements (in at least those
programming languages that can be handled by precedence parsers). If operators are unambiguous
and the operands of arbitrary-arity operators are enclosed within delimiters, the extension to the
algorithm is straightforward. Problems arise in handling operators such as "-," which may be either
binary infix or unary prefix, but this problem could be handled by a table of such ambiguous operators
and their properties. For example, supbose the expression is "a + b - ¢.” In the ucual binary infix
case, deleting the "b" would cause it to be replaced by a meta node.

/ A\
* ¢
7\
a  SMETA
Figure 6-1: "-" as binary infix operator.

However, in the unary case. the "-" token could be recognized as a unary operater whose single
child is the "¢* identifier and the tree could be restructured to reflect this.

Figure 8-2: "-" as unary prefix operator.

The algorithm can aiso be extendegi to handle function calls and array references. The function
call or array reference would simply be recognized as a member of a special class of "tokens". Fon"
example, adding the identifier "f" in front of an open parenthesis would cause the subexpression
following the parenthesis node to be treated as the first actual parameter of the function "f." A
comma (",") operator would be added to the algorithm to handle multiple parameters. A correct
subtree representing the function call would be treated as a terminal node by rest of the algorithm.

The keywords of statements, such as ":= ", could be treated as operators with the same special
precedence as matchéd parentheses, easing the extension of the algorithm to statements. A difficul&
arises in the case of multiple or ambiguous keywords, such as "if-then” and "if-then-else.” This
case could be handled by ignoring the "then" token and treating the "else" token similarly to the
close parenthesis: the "else"” node is migrated up the statements list to the matching "if-then” and
changes the type of the no&e to "if-then-else." Statements and arbitrary-arity operators require that
the syntax-directed editor supports lists as well as fixed-arity nodes, which is true of all editors for
realistic programming languages.
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\=esaone if-then
| / 0\
| <exp> {stati>
toonmnons else
| |
| {stat2>
l
(statd>

Figure 6-3: Before restructuring.

\~ovnce= ift-then-else
| / ! \
| <exp> <statl> (stat2>

|
<statd>

Figure 6-4: After restructuring.

Another extension to the algorith}n is the capability to position the cursor at a consecutive
sequence of tokens as well as a single token. The extend-left and extend-right commands would
be provided for the user to stretch the cursor over adjacent tokens, one at a time. !In elastic token

mude, the editing commands would be:

e construct: The effect of the elastic cursor on the construct command is to permit a
string of tokens ta be sequenﬁa!ly inserted from the command line, either before or after

the current cursor position.

o dalete: Similarly, the effect on the delete command is to permit a string of tokens to be

sequentially deleted.

e clip: Clip copies the tree structure representing the.selected sequence of tokens to'a

buffer.

e insert: Insert adds the clipped structure to the syntax tree, restructuring as necessary.

Elastic mode construct and delete could be handied by repeated application of the existing
algorithm (aithough they could be speeded up considerably by special implementationj. However,
clip and insert of arbitrary sequences can not currently be handled. An easy way to do the
extension would be a copy command, which took a portion of a tree as input and copied each
successive token into a buffer or at the cursor position, using the normal construct command to
build the clipped tree or insert a clipped tree into the editing tree. The copy command could be .
implemented using the existing transformations. It is likely that some shortcut transformations could 4

also be found.

4
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6.3 Complexity

The algorithm is linear in time and space. The various construct commands are O(n + m), where n
is the number of nodes on the path between where a token is inserted in the tree and the root of the
tree and m is the length of the path to the right- or left-adjacent token. Only the nodes on this path,
plus a constant number of other nodes adjacent to each node on this path, are considered by the
construct algorithms. O(m) could be reduced to a constant by threading tokens according to their
left-to-right and right-to-left positions in the dispiay.

The delete command is O(n + m), where n is the number of nodes between the deleted token and
the root or fringe of the tree, depending ¢n the particular circumsténces. and m is the length of the
path between the deleted token and its left- (or right-) adjacent token in the display. This (m) must be
considered since the cursor is moved to the left adjacent token by a delete. in the other commands,
the cursor _rémains at the new node or-the selected node. As above, O(m) could be replaced by a
constant by threading the leaf nodes with hoth left-to-right and right-to-left links. This would require
more space and invoive modifications to ihe internal representation of the syntax uée.

The replace command is effectively a delets, without cursor motion, followed by a construct. It
takes O(2n) = O{n).

The commands are implemented using the transformations presented in Chapter 5. The simple
transformations, such as fill, nest, unnest and twiddle require constant time. The rippleup
transformation compares the node to its ancestors and uses the macrotwiddle transformations to
make the necessary cﬁanges in the tree. It looks at O(n) nodes. The rippledown transformation
compares the node to its descendants and migrates the node down the tree. It looks at O(2n) = O(n)
nodes. In the worst case, n is the height of the tree for rippleup and rippledown.' The collapse
transformation, which performs the bulk of an operator or terminal delete, requires O(m) time to find
the node to .which to move the cursor and O(n) time to rippleup the node that replaces the deleted
node. As above, O(m) could be made constant by threading. Matchparens requires O(n) time to find
the matching parenthesis, plus O(n) time for the rippleqp invocations.

Thus the algorithm is linear in the depth of the expression tree. In practice, it is generally linear in
the number of nodes that actually must be migrated by the transformations, but in the worst case
additional nodes may be considered. )

Since no auxiliary data structures are created, space is eithai' the same as time to reflect the cost of
the activation records for tﬁe recursion, or O(1) if recursion is considered free.
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6.4 Implementation

We have implemented our incrementél expression parsing algorithm for binary infix opérators in
:li Maclisp on Tops-20. This is a stand-alone implementation, and is not embedded in a syntax-directed
editor. It provides the construct after, construct before, construct at, delete and replace
commands and displays the tree by unparsing it into infix form. Both structure-oriented (next,

. previous, in, out) and display-oriented (left, right) cursor commands are supported. All trees are
p constructed using a small set of operators and identifiers, both of which can be extended by
- augmenting a table. ’

- The complete algorithm is in the process of being implemented as part of the command interpreter
F of the Display Oriented Structure Editor (DOSE) system [1, 5] being developed by the Software
: Technology group at Siemens Corporation Corporate Research and Technology at Princeton, NJ.
] The initial implementation is in and for PERQ Pascal on the Three Rivers Computer Corporation
;‘ PERQ personal computer.

S

6.5 Summary

o This document describes an incremental parsing algorithm sigﬁificantly different from other

b approaches to incremental parsing for syntax-directed editors. Our aigorithm does not require
maintenance of the parser state or a text buffer. It requires no data structures other than the syntax
tree itself. Our algorithm does not rely on modifications to a traditional parser. It uses a small set
(less than a dozen) of tree transformations that are sufficient to handie a superset of the precedence
languages. All language-dependent information is contained in the operator precedence table. Our
algorithm modifies the tree immediately, during each'editing operation. The resulting expression can
be immediately displayed by refreshing the screen. Finally, our algorithm is robust in the face of
certain types of syntax errors. And, in contrast to the typical template-driven approach to syntax-
directed editing, the user edits in terms of the tokens as they are displayed on the screen rather than
in terms of the internal syntax tree.
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l. Appendix

This appendix inciudes a table of operator precedences, a figure that associates each procedure
with the set of transformations it uses and a pseudo-code version of the two Ripple transformations
and the algorithms that implement the various user commands.

oporator | Jeft-precedonce | right-precadence
+ [ 1 | 1
- | 1 | 2
* 1 3 | 3
t | 8 | 5

Figure 1-1: Table of Operator Precedences.

basic compound calling
transformations transformations procedures
------------ L it Sttt ST L L LT S P
inserting | i) | } rippleup
identifiers | nest (right/lTeft) } |
and | twiddle (right/left) | macrotwiddle I
cparators | } (right/left) }
------------ L L ittt lat: Sttt st sttt LT
inserting | matchparens | macrotwiddle |
parentheses | | (open/close) |
------------ T T LR Tt L O
deleting | unnest . | | rippledown
replacing | collapse { *
and swapping| | |

Figure I-2: Summary of the Transformations
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procedure RippleUp (tree : Node)
var parent : Hode
beqin
if ( not IsRoot(tree) and not IsLeaf(tree) ) then
if ( 1sParens(tree) ) then
if ( not MatchParens(tree) ) then
selaect ( GetParenslype(tree) ) of

open: MacroTwiddleOpen(tree)

close: Macrotw1ddloCIOso(troe)

match: RippleUp(parent)
endselect

else if ( not IsMatch(parent) ) then
select ( GetSide(tree) ) of
right: MacroTwiddlelLeft(tree)
left: MacroTwiddleRight(tree)
endselect
endif
endif
end

procedure RippleDown (tree : Node)
var left, right : Node
begin
left := GetLeftChild(tree)
right := GetRightChild(tree)
if ( IsOp(left) ) then
if ( LeftPrec(GetOp(tree)) > RightPrac(GetOp(left)) ) then
TwiddleLeft(tree, left)
Ripplelp(left)
RippleDown(tree)
endif
endif
it { IsOp(right) ) thon
it ( RightPrec(GetOp(tree)) > LertProc(GotOp(right)) ) then
TwiddleRight(tree, right)
RippleUp(right)
RippleDown(tree)
endif
oendif
end

. procedure ConstructAfter

var token : String
type : TypeOfToken
begin
while ( true ) do
roead( token, typo)
select ( type ) o
or: ConstrOpAftor(tokon)
OPEN: ConstrOpenAfter
CLOSE: ConstrCloseAfter
TERM: ConstrTermAfter(token)
endseloct
endwhile
end

procedure ConstrOpAfter ( newop : String )
var temp : Node
begin
temp := FindRightToken(Cursor)
if ( IsEmptyOp(temp) ) then
Fi110p(temp, newop)
Cursor := temp
RippleUp(Cursor) -
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else .
select ( GetType(Cursor) ) of
OP, OPEN:
NestRight(temp, newop)
Cursor := GetParent(temp)
RippleUp(Cursor)
TERM, CLOSE:
NestLeft(Cursor, nawop)
Cursor := GetParent(Cursor)
RippleUp(Cursor)
endselect
endif
end

procedurs ConstrTermAfter { newid : String )
var temp : Node
begin
selact ( GetType(Cursor) ) of
OP, OPEN: .
temp := FindRightToken{Cursor)
it ( not IsMeta(temp) ) then
NestRight(temp, °'SOP')
temp := GetLeftChild(GetParent(temp))
endif
Cursor := temp
FillMeta(Cursor, newuid)
TERM, CLOSE: .
- NastLeft(Cursor, '$OP')
temp := GetRightChild(GetParent(Cursor))
Cursor := temp
FillMeta(Cursor, newid)
endsolect
end

procedurae ConstrOpenAfter
var temp : Node

begin
select ( GetType(Cursor) ) of
OP, OPEN:
temp := FindRightToken(Cursor)
NestRight(temp, '(') :
Cursor := GetParent(temp)
RippleUp(Cursor)
TERM, CLOSE:
error
endseloct
end

procedure ConstrCloseAfter
begin
seloct ( GotType(Cursor) ) of
OP, OPEN:
error
TERM, CLOSE:
NestLeft(Cursor, ')')
Cursor := GetParent(Cursor)
RippleUp(Cursor)
endselect
end

procedure ConstructBefore
var token : String

type : TypeOfToken
begin

read(token, type)
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select ( type ) of

oP: ConstrOpBefore(token)
OPEN: ConstrQpenBefore

CLOSE: ConstrCloselBefore
TERM: ConstrTermBefore(token)
endselect

end

procadure ConstrOpBefore ( newop : String )
var temp : Node
begin
temp := FindLeftToken(Cursor)
if { IsEmptyOp(Lemp) ) then
Fi110p(temp, newop)
Cursor := temp
RippleUp(Cursor)
eise
select ( GetType(Cursor) ) of
. OP, CLOSE:
" NestlLeft(temp, newop)
S Cursor := GetParent(temp)
RippleUp(Cursor)
- TERM, OPEN:
= NastRight(Cursor, newop)
aE Cursor := GetParent(Cursor)
RippleUp(Cursor)
,,. endseloct
andif

end

- procedure ConstrTermBefore ( newid : String )
var tomp : Node
begin

selact ( GetType(Cursor) ) of
C OP. CLOSE:
¢ temp := FindLeftTcken(Cursor)
s if ( not IsMeta(temp) ) then
b NestLeft(temp, 'SOP')
t-' temp := GetRight(GetPareat(temp))
L endif :
- Cursor := temp
b FillMeta(Cursor, newuid)
beett TERM, OPEN: : .
o NestRight(Cursor, 'SOP')

temp := GotLeftChild(GetParent(Cursor))

Cursor := temp

FillMeta(Cursor, newid)

. endselect
& end
P 12
- procedure ConstrOpenBefore
o var tamp : Node
X begin

L select ( GotType(Cursor) ) of
: 0P, CLOSE:

f-'.-. error
TERM, OPEN:

- NestRight(Cursor, '(')
f Cursor := GetParent(Cursor)
. RippleUp(Cursor)
L endseotlect
- end
b o’
v procedure ConstrCloseBefore

: begin

vy

select ( GetType(Cursor) ) of

| RN STt P L . . R ! L L. R .
L. L




.

A D diadand

r

T Y
. ‘i“_‘. . B

27 October 1682

OP, CLOSE:
temp := FindLeftToken(Cursor)
NestLeft{temp, ')')
Cursor := GeiParent(temp)
RippleUp(Cursor)

TERM, OPEN:
error

endselect

end

procedure ConstructAt
var token : String
type : TypeOfToken
begin
if ( IsEmptyOp(Cursor) ) then
read(token, type)
it ( type = OP ) then
Fi110p(Cursor, token)
RippleUp(Cursor)
else
error
else if ( IsMeta(Cursor) ) then
read(token, type)
select ( type ) of
TERNM:
FillMeta(token)
OP, CLOSE:
NestLeft(Cursor, token)
RippleUp(token)
OPEN:
NestRight(Cursor, token)
RippleUp(token)
endselect .
else
error
ondif
ond

procedure Delete
var node : Node

bdegin
node := Cursor
MoveCurseriLeft
select ( GetType(node) ) of
oP: Deletelp(node)
OPEN: DeleteOpen(node)
CLOSE: DeleteClose(node)
TERM: DeleteTerm(node)
endselact

end

procedure DeleteOp ( node : Node )
var temp : Node
begin :
temp := FindRightToken(node)
it ( IsMeta(temp) ) then
CollapselLeft(node, temp)
else
temp := FindLeftToken
it ( IsMeta(temp) ) then
CollapseRight(node, temp)
olse
PutOp(node, 'SOP')
RippleDown( node)
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endif
endil
end

procedure DeleteTerm ( node : Node )
var temp : Node
begin
temp := lindRightToken(node)
if ( IstmptyOp(temp) ) then
CollapseRight(temp, node)
else
temp := FindlLeftToken(node)
if ( IsEmptyOp(temp) ) then
Collapscleft(temp, node)
else
FillMeta({node, 'SMETA')
endif
endif
end

procedure DeletoOpen ( node : Node )
var child : Node
begin
child := GetChild(node)
it ( IsMatchParen(node) ) then
PutParen(nade, *)')
RippleUp(node)
RippleUp(child)
olse
UnNestRight(node)
RippleUp(child)
ondif
ond

procedure Deletellose
var child : Node
begin

child := GetChild(node)

i? ( IsMatchParen(node) ) then
PutParen(node, ‘(')
RippleUp(nade)
RippleUp(chiid)

else
UnNestLeft(node)
RipplieUp(child)

ondif .

end

procedure Replacelp
var newop : String
type : TypeOfToken
begin
read{newop, type)
if ( (type = OP) AND (GetType(Cursor) = OP) ) then
PutOp(Cursor, newop)
RippleUp(Cursor)
RippleDown(Cursor)
olse
error
endif
ond
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